• Users Online: 66
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 5  |  Issue : 2  |  Page : 37-47

Doxycycline: An antibiotic with brain protective function in vanadium-intoxicated rats


1 Department of Biochemistry, Faculty of Medicine, Benghazi University, Benghazi, Libya
2 Department of Physiology, Faculty of Medicine, Benghazi University, Benghazi, Libya
3 Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia

Correspondence Address:
Syed Saleem Haider
Department of Clinical Biochemistry, College of Medicine, King Khalid University, P. O. Box 641, Abha 61321
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/LIUJ.LIUJ_29_20

Rights and Permissions

Background: Exposure to vanadium exhibits deleterious neurotoxicity. Doxycycline is a potential antioxidant that prevents the progression of disease through inhibition of lipid peroxidation. Objectives: This research investigates the neuroprotective effects of doxycycline, in different rat brain areas in an animal model intoxicated with vanadium. Materials and Methods: Male Sprague-Dawley rats were equally divided into the following four groups: control group, doxycycline-treated group, vanadium-treated group, and concomitant doses of doxycycline plus vanadium-treated group, all given orally for 10 consecutive days. The animals were watched daily for any signs of neurological defects. They were sacrificed by decapitation 24 h after the last dose. Brain was removed rapidly and dissected into cerebral cortex, cerebellum, and brain stem. Biochemical studies including the concentrations of phospholipids, cholesterol, cerebrosides, glutathione (GSH), acetylcholinesterase (AChE) activity, gangliosides, ascorbic acid, calcium, and lipid peroxidation levels were determined. Results: The results revealed that vanadium produced significant reduction in body and absolute brain weight, with neurological function deficits. Vanadium significantly decreased the concentrations of phospholipids, cholesterol, cerebrosides, and GSH and inhibited AChE activity together with significant increase in gangliosides, ascorbic acid, calcium, and lipid peroxidation levels compared to saline controls. Animals which were given the combined treatment of vanadium and doxycycline regained weight and became normal. Moreover, doxycycline reversed the effect of vanadium on the metabolic variables and inhibited lipid peroxidation nearing to normal levels to that of saline controls. Conclusion: These findings demonstrated the antioxidant or chelating action of doxycycline against vanadium neurotoxicity and its therapeutic potential to avert neurodegenerative changes in different rat brain areas.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1233    
    Printed31    
    Emailed0    
    PDF Downloaded85    
    Comments [Add]    

Recommend this journal